

We've rebranded some of our products. **Phenoptics™** is now **PhenoImager™**. and **Vectra® Polaris™** is now **PhenoImager™ HT**.

8-plex, 9-color Multispectral Imaging

PUSHING THE BOUNDARIES: OPAL FLUOROPHORES 480 AND 780 OPEN UP A NEW WORLD OF POSSIBILITIES FOR MULTISPECTRAL IMAGING

Introduction

In the arena of cancer research, new advancements in tissue analysis and biomarker detection are critical to the development of more precise, targeted therapies. Now, more than ever, there is significant emphasis on understanding the underlying interaction between the immune system and the tumor microenvironment and its role in disease progression. To this end, immunofluorescence has greatly increased our understanding of solid tumor biology and immunology, including tumor-infiltrating lymphocytes and cancerinduced architectural alterations, and aided in novel immunology discoveries.

Previously released Opal™ Multiplex 4- and 7-Color Immunohistochemistry (IHC) detection kits from Akoya Biosciences have paved the way for the establishment of multiplexed IHC methods as a preferred method for analysis of cellular composition and interactions in FFPE tissue sections. Open and flexible for use with any primary antibody, researchers can be confident that there will

be no cross-reactivity within their samples. Additionally, more information can be gathered from limited samples, including multiple cell phenotypes, and spatial and morphological information that is often neglected with other data collection methods.

We are excited to introduce two new Opal fluorophores, Opal Polaris 480 and Opal Polaris 780. These fluorophores can be acquired either as part of our 7-color Opal Multiplex IHC (Figure 1) or individually, to use in conjunction with the existing 7-Color Opal Detection kits (Table 1). In addition, we will offer the necessary imaging platforms and filters (Table 2) to use with the new fluorophores, which will allow

researchers to conduct rapid 7-color whole slide multispectral imaging, as well as the capability of capturing up to eight IHC targets of interest, along with DAPI nuclear stain.

Authors

- · Bethany Remeniuk, PhD
- · Clifford Hoyt, MS
- Akoya Biosciences, Inc— Marlborough, MA

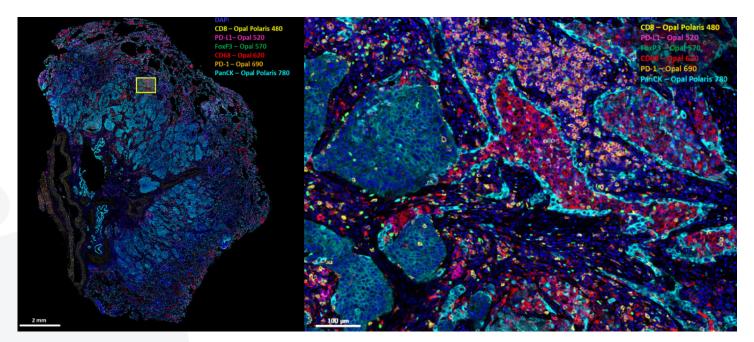


FIGURE 1. (Left) Whole slide imaging using 7-color Opal IHC Multiplex staining with new fluorophores, Opal Polaris 480 and Opal Polaris 780, in lung cancer. Image displays cytotoxic T-cells in yellow (CD8), programmed death ligand 1 on cytotoxic T-cell suppressors in magenta (PD-L1), regulatory T-cells in green (FoxP3), macrophages in red (CD68), programmed death receptor 1 on activated/exhausted T-cells in orange (PD-1), pan cytokeratin stained epithelial tumor cells in cyan (PanCK), and DAPI nuclear counterstain in blue. (Right) 10x magnification of a selected field of view of the tissue sample.

OPAL FLUOROPHORE EXCITATION AND EMISSION SPECTRA

TABLE 1. Opal fluorophores included with each of the three IHC kits, as well as their excitation peak, emission peak, and corresponding cap color.

FLUOROPHORE	OPAL MULTICOLOR IHC KITS					
	4-COLOR	7-COLOR	7-COLOR	EXCITATION	EMISSION	CAP COLOR
Spectral DAPI	√	\checkmark	\checkmark	368 nm	461 nm	Blue
Opal Polaris 480			V	450 nm	500 nm	Violet
Violet Opal 520	√	√	V	494 nm	525 nm	Green
Opal 540		√		523 nm	536 nm	Yellow
Opal 570	√	√	√	550 nm	570 nm	Red
Opal 620		√	V	588 nm	616 nm	Amber
Opal 650		√		627 nm	650 nm	Orange
Opal 690	√	√	V	676 nm	694 nm	Clear
Opal Polaris 780			V	750 nm	770 nm	Pink

OPAL FLUOROPHORE AND IMAGING FILTERS

TABLE 2. Opal fluorophores and the necessary filters to conduct MSI. The Mantra and PhenoImager™ HT (formerly Vectra® Polaris™) require the Liquid Crystal Tunable Filter (LCTF) to conduct 8-plex, 9-color MSI. The upgraded filter cube for the PhenoImager HT is required for 7-color whole slide unmixing in combination with the Opal™ 7-Color IHC kit. Whole slide MSI cannot be conducted without the filter cube upgrade or and Opal Polaris 780 dyes.

	FILTERS					
FLUOROPHORE	MANTRA	PHENOIMAGER HT				
	9-Color Unmixing with LCTF	7-Color Whole Slide Unmixing	9-Color Unmixing with LCTF			
Spectral DAPI	DAPI	DAPI + Opal 570/690	DAPI + Opal Polaris 780			
Opal Polaris 480	TBD	Opal Polaris 480/620/780	Opal Polaris 480 + Cy5			
Opal 520	FITC	Opal 520	FITC			
Opal 540	FITC, Cy3	N/A	FITC, Cy3			
Opal 570	FITC, Cy3, Texas Red	DAPI + Opal 570/690	FITC, Cy3, Texas Red			
Opal 620	Cy3, Texas Red	Opal Polaris 480/620/780	Cy3, Texas Red			
Opal 650	Texas Red, Cy5	N/A	Texas Red, Opal Polaris 480			
Opal 690	Cy5	DAPI + Opal 570/690	Opal Polaris 480 + Cy5			
Opal Polaris 780	Су7	Opal Polaris 480/620/780	DAPI + Opal Polaris 780			

The Benefits of 8-Plex, 9-Color MSI

One of the biggest limitations in traditional immunofluorescence imaging is the number of IHC targets of interest that can be investigated. Typically, only two to three markers of interest can be studied, not including DAPI nuclear stain. This significantly limits the cell-level biological detail that can be gathered from tissue sections. Furthermore, images may contain significant background autofluorescence, ultimately reducing the range of expression that can be measured, sometimes obscuring expression or leading to false signal.

Multispectral imaging removes these confounding factors by spectral unmixing, which using reference spectra (libraries) to completely remove cross talk between fluorophores, ensuring that the fluorophore signals are accurately captured, while simultaneously removing autofluorescence from the images. You can be confident in the data you collect and analyze.

The addition of the Opal Polaris 480 and 780 fluorophores now greatly expands upon the capabilities that Akoya Biosciences offers. With the addition of the PhenoImager HT platform, 8-plex, 9-color Multiplex IHC becomes a practical reality, enabling deeper understanding of the underlying biology driving disease progression and response, allowing users to discover new biomarkers and to test hypotheses. This new technology makes it possible to phenotype more than 500 cell types defined by different

co-expressions, and to observe more cell-to-cell interactions and in-depth architectural details. The complexity of assay validation is somewhat greater for nine colors compared to seven colors, and one can capture twenty 20x multispectral fields for analysis plus a non-spectral whole-slide 20x reference image in as little as 20 minutes (Figure 2).

Together, the addition of these fluorophores to the Opal lineup pushes the boundaries of immuno-oncology research and provides greater visualization and insight into the interplay between tumor and immune cells within the tumor microenvironment.

TABLE 3. Opal 7-Color IHC Kits contain the following fluorophores: 520, 540, 570, 620, 650, 690, and spectral DAPI.

DESCRIPTION	PRODUCT #
Opal 7-Color Manual IHC Kit	NEL811001KT
Opal 7-Color Automation IHC Kit	NEL821001KT
Opal 7 Immunology Discovery Kit	OP7DS2001KT
Opal 7 Tumor Infiltrating Lymphocyte Kit	OP7TL3001KT
Opal 7 Solid Tumor Immunology Kit	OP7TL4001KT

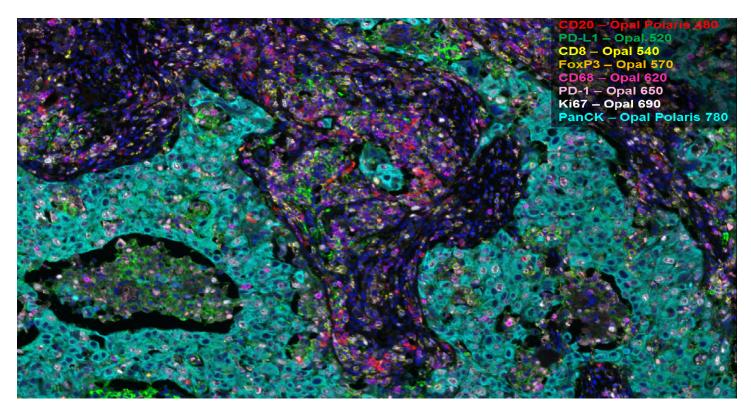


FIGURE 2 9-color Opal IHC staining of lung cancer. Image displays B-cell lymphocytes in red (CD20), programmed cell death ligand 1 on cytotoxic T-cell suppressors in green (PD-L1), cytotoxic T-cells in yellow (CD8), regulatory T-cells in orange (FoxP3), macrophages in magenta (CD68), programmed cell death receptor 1 on activated/ exhausted T-cells (PD-1), nuclear marker for cellular proliferation (Ki67), pan cytokeratin stained epithelial tumor cells in cyan (PanCK), and DAPI nuclear counterstain in blue.

How to Order for 8-plex, 9-color Multispectral Imaging

To unlock this new technology, individual Opal Reagent Packs for fluorophores 480 (FP1500001KT) and 780 (FP1501001KT) can be purchased separately to work in conjunction with one of the 7-color IHC kits listed below (Table 2).

Staining Protocol for Opal Polaris 480 and Opal Polaris 780

Opal users can easily assimilate the Opal Polaris 480 fluorophore into their already established protocols for formalin fixed paraffin embedded tissue. Staining with Opal Polaris 480 follows Steps 3-7 in the workflow schematic, similar to Opal fluorophores 520, 540, 570,

620, 650, and 690 (Figure 3), as the Opal signal will not be detrimentally affected by heat treatment for antibody removal. Integration of Opal Polaris 780 is a two-step process that is necessary to complete after all other Opal fluorophores have been used, as this is an antibody-based staining step, and heating of the slide cannot be performed after it has been applied to the marker of interest (Step 13).

Step 1	Slide Preparation		
Step 2	Epitope Retrieval		
Step 3	Blocking	antibody and	
Step 4	Primary Antibody Incubation		
Step 5	Introduction of Opal Polymer HRP		
Step 6	Signal Ampliftcation		
Step 7	Antibody Stripping		
Step 8	Blocking		
Step 9	Primary Antibody Incubation		
Step 10	Introduction of Opal Polymer HRP		
Step 11	Introduction of Opal TSA-DIG		
Step 12	Antibody Stripping		
Step 13	Opal Polaris 780 Signal Generation		
Step 14	DAPI Counterstain and Mount		

FIGURE 3. Opal 7-Color and Opal 9-Color Workflow Schematic.